\(\int \csc ^2(e+f x) (a+b \sin ^2(e+f x))^{3/2} \, dx\) [141]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 181 \[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=-\frac {a \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {(a-b) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {a (a+b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{f \sqrt {a+b \sin ^2(e+f x)}} \]

[Out]

-a*cot(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/f-(a-b)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1
/2)*(a+b*sin(f*x+e)^2)^(1/2)/f/(1+b*sin(f*x+e)^2/a)^(1/2)+a*(a+b)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e
)*(cos(f*x+e)^2)^(1/2)*(1+b*sin(f*x+e)^2/a)^(1/2)/f/(a+b*sin(f*x+e)^2)^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3267, 485, 538, 437, 435, 432, 430} \[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\frac {a (a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {a \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f} \]

[In]

Int[Csc[e + f*x]^2*(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

-((a*Cot[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/f) - ((a - b)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]
], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) + (a*(a + b)*Sqrt[Cos[e
 + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(f*Sqrt[a + b*
Sin[e + f*x]^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 485

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[c*(e*x)^(
m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)
*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*(c*b - a*d)*(m + 1) + c*n*(b*c*(p + 1) + a*d*(q - 1)) + d*((c*b - a*
d)*(m + 1) + c*b*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0]
 && GtQ[q, 1] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 538

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c]))))))

Rule 3267

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff^(m + 1)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[x^m*((a + b*ff^2*
x^2)^p/Sqrt[1 - ff^2*x^2]), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !In
tegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\left (a+b x^2\right )^{3/2}}{x^2 \sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = -\frac {a \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {2 a b-(a-b) b x^2}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = -\frac {a \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {\left ((-a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{f}+\frac {\left (a (a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = -\frac {a \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {\left ((-a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\left (a (a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a+b \sin ^2(e+f x)}} \\ & = -\frac {a \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {(a-b) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {a (a+b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{f \sqrt {a+b \sin ^2(e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.09 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.78 \[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=-\frac {a \left (\sqrt {2} (2 a+b-b \cos (2 (e+f x))) \cot (e+f x)+2 (a-b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )-2 (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )\right )}{2 f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

[In]

Integrate[Csc[e + f*x]^2*(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

-1/2*(a*(Sqrt[2]*(2*a + b - b*Cos[2*(e + f*x)])*Cot[e + f*x] + 2*(a - b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a
]*EllipticE[e + f*x, -(b/a)] - 2*(a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)]))/(
f*Sqrt[2*a + b - b*Cos[2*(e + f*x)]])

Maple [A] (verified)

Time = 2.28 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.96

method result size
default \(\frac {a \left (b \left (\cos ^{4}\left (f x +e \right )\right )+\left (-a -b \right ) \left (\cos ^{2}\left (f x +e \right )\right )+\sin \left (f x +e \right ) \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \left (F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a +F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b -E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a +E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b \right )\right )}{\sin \left (f x +e \right ) \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(174\)

[In]

int(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

a*(b*cos(f*x+e)^4+(-a-b)*cos(f*x+e)^2+sin(f*x+e)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*(cos(f*x+e)^2)^(1/2)*(Ellip
ticF(sin(f*x+e),(-1/a*b)^(1/2))*a+EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b-EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*
a+EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*b))/sin(f*x+e)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

Fricas [F]

\[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \csc \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral(-(b*cos(f*x + e)^2 - a - b)*sqrt(-b*cos(f*x + e)^2 + a + b)*csc(f*x + e)^2, x)

Sympy [F(-1)]

Timed out. \[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(csc(f*x+e)**2*(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \csc \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sin(f*x + e)^2 + a)^(3/2)*csc(f*x + e)^2, x)

Giac [F]

\[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \csc \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*sin(f*x + e)^2 + a)^(3/2)*csc(f*x + e)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int \frac {{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2}}{{\sin \left (e+f\,x\right )}^2} \,d x \]

[In]

int((a + b*sin(e + f*x)^2)^(3/2)/sin(e + f*x)^2,x)

[Out]

int((a + b*sin(e + f*x)^2)^(3/2)/sin(e + f*x)^2, x)